Electromagnetic Theory

1.1 Electromagnetic Wave

Here we investigate the dynamical properties of the electromagnetic field by deriving a set of
equations which are alternatives to the Maxwell equations. It turns out that these alternative
equations are wave equations, indicating that electromagnetic waves are natural and common
manifestations of electrodynamics.

Maxwell’s microscopic equations are:

V.E = :%) (Gauss’s law in electrostatics) (1)
VXE = — 3—1: (Faraday’s law) (2)
V.B=0 (Gauss’s law in Magnetostatics) 3)
VX B = gyl Z—f + woj(t, x) (Ampere’s law) 4)

and can be viewed as an axiomatic basis for classical electrodynamics. In particular, these
equations are well suited for calculating the electric and magnetic fields E and B from given,
prescribed charge distributions p(t,x) and current distributions j(t, x) of arbitrary time- and space-
dependent form. However, as is well known from the theory of differential equations, these four
first order, coupled partial differential vector equations can be rewritten as two uncoupled,

second order partial equations, one for E and one for B.

1.2 Maxwell’s Equations
We are now able to collect the results from the above considerations and formulate the equations
of classical electrodynamics valid for arbitrary variations in time and space of the coupled

electric and magnetic fields E(t, x) and B(t, x). The equations are
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VXE= —— )
V.B=0 (3)



VX B = gUg Z_f + poj(t, x) “)

In these equations p(t, x) represents the total, possibly both time and space dependent, electric
charge, i.e., free as well as induced (polarization) charges, and j(t, X) represents the total,
possibly both time and space dependent, electric current, i.e., conduction currents (motion of free
charges) as well as all atomistic (polarization, magnetization) currents. As they stand, the
equations therefore incorporate the classical interaction between all electric charges and currents
in the system and are called Maxwell’s microscopic equations. Another name often used for
them is the Maxwell-Lorentz equations. Together with the appropriate constitutive relations,
which relate p and j to the fields, and the initial and boundary conditions pertinent to the physical
situation at hand, they form a system of well-posed partial differential equations which

completely determine E and B.

1.3. Maxwell Stress Tensor
The derivation starts with a calculacion of the toral force dos to electro-

magnetic fields on the charges and carrents within some volume 1. From
the Lorentz force law. we have
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We can think of the integrand as a force density, or force per unit volume

M=pE4+J1 =B (37

We can express this entirely in terms of fields by using Maxwell™s egqua-
tions:
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e now nesd to do a bit of vecror calculus gymnasrics. From the product
rule
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Combining these two we get
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We can insert this into [ and while we're at it, we can add on a Erm
;—ﬂ (V- B) B. This is always zero because V- B =0, but it gives the equation
a symmetry that will be useful in a minute, We get for the force density:
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Now another identity from vector calculus says

VIA-BI=A=x(VaBI+Bx (VA + (A VIBH{B-VIA (14

IfA =B =E we gat

VI(E") =2E=(V=xE)+2(E-V)E (15)
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Bx(VxB) = -V(E)-(B.V)B (17}

Putting this into[T3we get
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It might not seem that were making any progress, since the eguations
just get longer with each alteration. However, we can now introduce the

Maxwell stress tensor T which is a 3 = 3 matrix with components defined
b
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MNote that the tensor is symmetric: T3; — T;,. If we define the scalar
product of the tensor with an ordinary vector to be another ve ctorn

[-:l-iT}]izza.iTi‘, (22)

where the subscript j indicates the jth component of the resulting vector,
then the divergence is
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Comparing this with [20{ we see that we can write f in terms of T and
the Fovnting vector as
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The total force on the volume is then
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From the formula [Z3] for the divergence. we can see that the vector re-
sulting from the divergence has as its components the divergences of each
columm of T . Therfor we can apply the divergence theorem to the first
term in the integrand o get

F:fr ?-dn—s.;.p,.;.if Sdr (29
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where & is any surface that encloses only the charges and currents within
V.



